许多现实世界的分类问题的班级标签频率不平衡;一个被称为“阶级失衡”问题的著名问题。经典的分类算法往往会偏向多数级别,使分类器容易受到少数族裔类别的分类。尽管文献富含解决此问题的方法,但随着问题的维度的增加,许多方法没有扩展,并且运行它们的成本变得越来越高。在本文中,我们提出了端到端的深层生成分类器。我们提出了一个域构成自动编码器,以将潜在空间保留为发电机的先验,然后将其用于与其他两个深网,一个歧视器和一个分类器一起玩对抗游戏。对三个不同的多级不平衡问题进行了广泛的实验,并与最先进的方法进行了比较。实验结果证实了我们方法比流行算法在处理高维不平衡分类问题方面具有优势。我们的代码可在https://github.com/tanmdl/slppl-gan上找到。
translated by 谷歌翻译
实现一般逆设计可以通过用户定义的属性极大地加速对新材料的发现。然而,最先进的生成模型往往限于特定的组成或晶体结构。这里,我们提出了一种能够一般逆设计的框架(不限于给定的一组元件或晶体结构),其具有在实际和往复空间中编码晶体的广义可逆表示,以及来自变分的属性结构潜空间autoencoder(vae)。在三种设计情况下,该框架通过用户定义的形成能量,带隙,热电(TE)功率因数和组合产生142个新晶体。在训练数据库中缺席的这些生成的晶体通过第一原理计算验证。成功率(验证的第一原理验证的目标圆形晶体/数量的设计晶体)范围为7.1%和38.9%。这些结果表示利用生成模型朝着性质驱动的一般逆设计的重要步骤,尽管在与实验合成结合时仍然存在实际挑战。
translated by 谷歌翻译
In this paper, the Multi-Swarm Cooperative Information-driven search and Divide and Conquer mitigation control (MSCIDC) approach is proposed for faster detection and mitigation of forest fire by reducing the loss of biodiversity, nutrients, soil moisture, and other intangible benefits. A swarm is a cooperative group of Unmanned Aerial Vehicles (UAVs) that fly together to search and quench the fire effectively. The multi-swarm cooperative information-driven search uses a multi-level search comprising cooperative information-driven exploration and exploitation for quick/accurate detection of fire location. The search level is selected based on the thermal sensor information about the potential fire area. The dynamicity of swarms, aided by global regulative repulsion and merging between swarms, reduces the detection and mitigation time compared to the existing methods. The local attraction among the members of the swarm helps the non-detector members to reach the fire location faster, and divide-and-conquer mitigation control ensures a non-overlapping fire sector allocation for all members quenching the fire. The performance of MSCIDC has been compared with different multi-UAV methods using a simulated environment of pine forest. The performance clearly shows that MSCIDC mitigates fire much faster than the multi-UAV methods. The Monte-Carlo simulation results indicate that the proposed method reduces the average forest area burnt by $65\%$ and mission time by $60\%$ compared to the best result case of the multi-UAV approaches, guaranteeing a faster and successful mission.
translated by 谷歌翻译
Transfer learning increasingly becomes an important tool in handling data scarcity often encountered in machine learning. In the application of high-throughput thickness as a downstream process of the high-throughput optimization of optoelectronic thin films with autonomous workflows, data scarcity occurs especially for new materials. To achieve high-throughput thickness characterization, we propose a machine learning model called thicknessML that predicts thickness from UV-Vis spectrophotometry input and an overarching transfer learning workflow. We demonstrate the transfer learning workflow from generic source domain of generic band-gapped materials to specific target domain of perovskite materials, where the target domain data only come from limited number (18) of refractive indices from literature. The target domain can be easily extended to other material classes with a few literature data. Defining thickness prediction accuracy to be within-10% deviation, thicknessML achieves 92.2% (with a deviation of 3.6%) accuracy with transfer learning compared to 81.8% (with a deviation of 3.6%) 11.7% without (lower mean and larger standard deviation). Experimental validation on six deposited perovskite films also corroborates the efficacy of the proposed workflow by yielding a 10.5% mean absolute percentage error (MAPE).
translated by 谷歌翻译